

Development Standards & Practices Used
Standards:

● Software life cycle process (ISO/IEC 12207)
● Software assurance (ISO/IEC/IEEE 15026)
● Software review and audits (IEEE 1028)

Practices:

● Testing
● Refactoring
● Code reviewing
● Code simplicity

Summary of Requirements

Technologies:

● .NET 4.8 - a Windows based framework developed by Microsoft, utilized for
building web-based applications and more

● MSSQL - Microsoft SQL, relational database system language developed by
Microsoft

● Bootstrap 4.3 - a free and open-source CSS framework directed at responsive,
mobile-first front-end web development

● CKEditor 4 - a rich text editor which enables writing content directly inside of web
pages or online applications

● Microsoft Identity - a developer platform that allows developers to build
applications that sign in all Microsoft identities and get tokens to call Microsoft
APIs

Functionalities and use cases:

● Users (Roles & Rights) - every user role has different rights and any user cannot do
what they are not authorized to

● CRUD Blog Posts - create, read, update, and delete posts
● Comments (Approve / Deny) - approving or denying a comment made by a user
● Categories (Filter) - categorize and filter posts by tags and view by most recent
● Site settings - settings for the blog such as changing themes
● Unit testing - the testing of individual units/components of the project

SDMAY20-34 1

Applicable Courses from Iowa State University Curriculum
● COM S 309 Software Development Practices
● COM S 363 Intro to Database Management
● COM S 319 Construction of User Interfaces
● SE 329 Software Project Management

New Skills/Knowledge acquired that was not taught in courses
● .NET 4.8 Framework

● Microsoft SQL

● C#

● Bootstrap 4.3

● Microsoft Identity Framework/Owin Authentication
● Model/View/Controller Architecture

SDMAY20-34 2

Table of Contents
1 Introduction 4

1.1 Acknowledgement 4

1.2 Problem and Project Statement 4

1.3 Operational Environment 4

1.4 Requirements 4

1.5 Intended Users and Uses 4

1.6 Assumptions and Limitations 5

1.7 Expected End Product and Deliverables 5

2. Specifications and Analysis 5

2.1 Proposed Design 5

2.2 Design Analysis 6

2.3 Development Process 6

2.4 Design Plan 6

3. Statement of Work 6

3.1 Previous Work And Literature 6

3.2 Technology Considerations 7

3.3 Task Decomposition 7

3.4 Possible Risks And Risk Management 7

3.5 Project Proposed Milestones and Evaluation Criteria 7

3.6 Project Tracking Procedures 7

3.7 Expected Results and Validation 7

4. Project Timeline, Estimated Resources, and Challenges 8

4.1 Project Timeline 8

4.2 Feasibility Assessment 8

4.3 Personnel Effort Requirements 8

4.4 Other Resource Requirements 8

4.5 Financial Requirements 9

5. Testing and Implementation 9

5.1 Interface Specifications 9

5.2 Hardware and software 9

SDMAY20-34 3

5.3 Functional Testing 9

5.4 Non-Functional Testing 9

5.5 Process 10

5.6 Results 10

6. Closing Material 10

6.1 Conclusion 10

6.2 References 10

6.3 Appendices 10

List of figures/tables/symbols/definitions

Definitions

UI: User Interface

CRUD: Create/Read/Update/Delete

MVC: Model-View-Controller

Figure 1: User Flow Diagram

Figure 2: System Block Diagram

Figure 3: Project Timeline with Subtasks and Dependencies

Figure 4: Project Timeline Gantt Chart

Figure 5: Testing Flow Diagram

Figure 6: Database Testing Diagram

SDMAY20-34 4

1 Introduction

1.1 ACKNOWLEDGEMENT

Thank you to our client Cylosoft, a national web development, ecommerce, and web hosting
company, for their technical and design support throughout the project. They have given us a lot of
freedom when it comes to the overall design and implementation of the Open Source .NET Blog,
but are always available for any questions we may have regarding the features required. Cylosoft
setup and gave us access to an SQL database so we could begin our implementation phase.

We would also like to thank Mohamed Selim, our Iowa State Advisor for this project, for helping us
through the development and planning process.

1.2 PROBLEM AND PROJECT STATEMENT

General Problem Statement

In the current state of the world there are a limited amount of open source .NET blogs for users to
take advantage of. Those that exist are outdated and fall behind today’s technology. Because of this
Cylosoft would like their own blog platform which include additional features and allow them more
control.

Upon a quick survey we have come to realize that our competition currently utilizes outdated .NET
or .NET CORE Frameworks, has no Microsoft Identity implementation, has no MVC architecture,
and offers paid themes for customization.

General Solution Approach

In response to our competition, our project addresses their issues by utilizing current techniques
and practices as well as the current .NET Framework, a Microsoft Identity implementation, an MVC
architecture, and free themes for customization. On top of all that our project is also open-source.

1.3 OPERATIONAL ENVIRONMENT

The .NET server and database will be hosted through Microsoft’s Azure cloud service.

1.4 REQUIREMENTS

Functional Requirements

Normal User Area for viewing content

● A blog visitor shall be able to sort posts by most recent
● A blog visitor shall be able to filter posts by tags
● A blog visitor shall be able to filter posts by categories
● A blog visitor shall be able to view approved comments on posts
● A blog visitor shall be able to sign up/log in for an account
● A blog visitor shall be able to comment on posts

SDMAY20-34 5

● A blog visitor shall be able to search for specific posts

Admin Area for controlling content

● An admin shall be able to Create, Read, Update, and Delete posts
● An admin shall be able to view new comments and approve them for others to see
● An admin shall be able to add posts to certain categories for users to filter by
● An admin shall be able to edit user roles
● An admin shall be able to change the theme

Non-Functional Requirements

● The software shall be accessible at any time
● The software shall properly handle errors behind the scenes out of the users view
● The software shall display content properly based on device screen size
● The software shall utilize Microsoft Identity for security
● The software shall follow the MVC architecture to ensure that future modifications are done

with speed and ease
● If a blog visitor is not signed in, then the blog shall not allow them access to unauthorized

portions of the application
● The user interface shall be visually appealing
● The product shall appear simple to use

1.5 INTENDED USERS AND USES

Our intention is to build an Open Source .NET blogging platform that allows Cylosoft to keep their
customers informed about their activities, while also being flexible enough for other individuals or
businesses to use as their own blog.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions

● The end product will be open-source.
● The end product will be able to support multiple users at a time.
● The end product will be viewable on various media device screen sizes.

Limitations

● The length of time to produce the end product will not surpass May 2020.
● Enough database space to hold thousands of blog posts
● The cost of the product cannot exceed $150/month

1.7 EXPECTED END PRODUCT AND DELIVERABLES
● Open Source .NET Blog Platform with source code
● Documentation

○ Design document

SDMAY20-34 6

○ Database design
○ Architecture design

Expected Delivery date: May 1, 2020

2. Specifications and Analysis

2.1 PROPOSED DESIGN

Our project is a .NET web application with the roles of admin, editor, and blog visitors. Using
Microsoft Identity, an admin will login and have access to functionality that will allow them to
manage the content of their blog and their blog’s settings. The blog visitors go to the blog
homepage where they can view the blog’s content and make comments on the posts. All data is
stored in an Azure MSSQL database.

2.2 DESIGN ANALYSIS

Figure 1

So far, we have began mocking up our user processes and researching .NET development. We plan
to begin work with the User Flow Diagram from Figure 2 in mind. These are most of the

SDMAY20-34 7

requirements for our users to be able to operate their blogs and where in the website they can do
each of these functions.

Our admin users start by logging in and are placed in the admin area. From here, they can select
from the menu to work in the Posts section, the Comments section, or the Blog Settings section.
These all have several actions that admins will be able to perform and the main actions are shown
in the red ovals. If a user is not an admin, they will simply start on the homepage and be able to
view all of the posts for a blog. They can click on a specific post to view the whole post and then
make comments at the bottom of the screen. Otherwise, they can search for specific posts or show
posts either assigned to a category or containing a tag.

2.3 DEVELOPMENT PROCESS

Our team will be following the Agile Development Process. We believe that adhering to the 12
principles will help immensely, allowing us to work flexibly and keep us on track. We will be using
Trello as our agile board to help us assign tasks to the team. This will allow us to have a visual
indicator on our progress for our current sprint and the effort of each teammate. Separating tasks
into sprints allows us to more easily plan our work and make it manageable. We plan to release our
first prototype by the end of the Fall 2019 semester in December. From there we will work
incrementally to further develop features and refine our project. We will end with a final product in
early May.

2.4 DESIGN PLAN

Figure 2

This is our first conceptual block diagram for how our Model View Controller system will function.
You can start in either the Admin Area View or Normal User View, but both follow the same flow.
Starting from the Admin Area View you will have options like CRUD Posts, a functionality allowing
you to Create, Update, Read, or Delete any and all posts on the blog. After deciding what action you
would like to perform the VIEW sends a user action request to the controller module. Inside this
main module there are two main controllers, one for the admin and one for the home. Since we are
doing CRUD Posts from the view we will also use the corresponding controller. This controller then
updates the model, the model being our representation of the data contained inside the database.
The model, after receiving the update and changing whatever needs to be changed, will then notify
the controller which in turn will then update the corresponding view.

SDMAY20-34 8

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

BlogEngine.NET is the product that Cylosoft had us look at to get an idea of what we were building.
This product is an open source blog builder with very similar features as to those required for our
project. They offer a fairly easy setup and good design with clear methods for building the blog,
with post management, comment management, user management, and a blog settings page. They
also offer $10 theme packages for users to pick from.

Our project plans to offer a more attractive UI than similar products as well as incorporate
up-to-date libraries. A point Cylosoft made was that current products aren’t actively maintained so
as technology advances the current solutions just aren’t up to date.

3.2 TECHNOLOGY CONSIDERATIONS

Our most prominent technology that we are developing with is .NET, which is a popular option
with good amounts of documentation making it easy for our team to pick up quickly to begin work
on the project. It also allows for simple server setup with many hosting services and integrates well
with the other technologies in the project. C# will be used for handling a majority of our backend
systems as it handles database transactions easily and has many examples performing similar
features compared to our own solution.

Our database system will run using MSSQL, another popular technology that stays in the Microsoft
development ecosystem. Our account system is Microsoft Identity, which offers an easy to use way
to register and login in users and user our MSSQL database to store basic account information
securely. It also provides a role system, which will be utilized for allowing access to certain parts of
the software.

The project will also utilize MVC for clear documentation and modular development purposes, as
well as Bootstrap for responsive design.

A different design approach could be to not use MVC at all, in lieu of just using stand alone Razor
pages. This results in less clear code and simply wouldn’t be as modular, which would not suffice
for our project as it benefits greatly from using modular pieces for things like posts between the
admin system and the normal user views.

SDMAY20-34 9

3.3 TASK DECOMPOSITION

Figure 3

Figure 3 contains the task decompositions, associated subtasks, and the dependencies of those
tasks for our first semester.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Our team is still new to many of the technologies and have not done complicated development in
the system so there could still be knowledge gaps to overcome. However, active development is
underway and our team is actively becoming more comfortable with development using these
technologies.

There is a potential risk for data loss but we will mitigate this by providing several options for
backups.

SDMAY20-34 10

Another risk is possibly not completing the project in time, however, we are following the agile
development process to stay on time. This will allow us to incrementally push out features in a
short period of time. If we do run out of time, we may have to alter or cut features entirely.

Another risk is miscommunicating the requirements of the project but we have mitigated this by
meeting up with our Cylosoft representatives on multiple occasions to clarify project points.

One last potential risk is failure to integrate 3rd party technologies into our project, such as
Gravatar. Though, we expect this to be a minor risk as much of this risk. Risks like this can be
attributed to our inexperience with all these technologies, which is becoming less of a problem
since we are quickly learning them.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

1. Post creation
a. Styled text
b. Viewable to non-admins
c. Include images

2. User management
a. Login/Register
b. Role assignment
c. Edit user settings
d. Delete users

3. Change other site settings
a. Blog theme

4. Admin area fully implemented

We plan to implement unit testing for our backend system as well as several acceptance tests with
Cylosoft.

3.6 PROJECT TRACKING PROCEDURES

In the beginning we were using an excel document to plan and keep track of our weekly progress.
The Weekly Plan document outlines the week, the task to be done, who it is assigned to,
completion percent, and shows which parts are dependent on each other. Since then, we have
moved towards utilizing a Gantt chart for planning. For next semester we also plan to use a Gantt
chart to plan out our project and track its progress as we go, as it provides more visual information
compared to our current setup.

3.7 EXPECTED RESULTS AND VALIDATION

Our desired outcome is to have a fully functional Open Source Blog up and running by the end of
May. We hope to have all the features Cylosoft required implemented and fully functioning in our
application. In regards to the pages accessible to a normal user they will have the ability to view
most recent posts, filter those posts by tags, and comment on the posts. In regards to the admin
area the functionality will include: full management of users, roles, and rights, ability to create,
read, update, and delete posts, approve or deny comments, create or delete categories and tags, and
the changing of site settings. The admin area will only be accessible to users logged in and that

SDMAY20-34 11

have a role marked as Administrator or Editor. Once a user has access to the admin area only
certain options will be accessible to them based on their current role.

At a High Level we will confirm our solutions through acceptance testing: having our project
contacts review and provide feedback on what needs to be adjusted. We will also revisit our
requirements and make sure each one has been met.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Figure 4

4.2 FEASIBILITY ASSESSMENT

The end goal of our project is to have an Open Source Blog application. It will be available for free
on GitHub for anyone to download and use for themselves. Some challenges we expect to face is
the implementation of all the desired features from Cylosoft and ensuring they work properly.
Another potential issue is making sure this application is truly “open source” and that other
potential users are able to setup and use the application fairly easily.

4.3 PERSONNEL EFFORT REQUIREMENTS

Task Personnel Effort

Initial MVC Project Setup Preliminary research into .NET MVC project
structure and setup, as well as incorporating
Razor pages and Microsoft Identity. Ensuring
this is done properly, knowledge of the MVC
architecture and how it is used will be essential
to making the project.

Connection to Database Look into the different ways of incorporating a

SDMAY20-34 12

database into a .NET application, such as the
repository pattern. Perform an initial
implementation and build out a testing project
to verify it works as intended.

Design and Functionality of Admin Page Build out a list of all the required functionality
for the Admin page. Build a more detailed list
of the step by step process each functionality
will need in order to function properly. Create
a mock up UI and begin implementation.

Testing Test everything as it is being built. This
essentially doubles everyone’s work load. After
implementation of a feature we will need to
build out a test method to confirm our change
works as intended.

4.4 FINANCIAL REQUIREMENTS

A Microsoft Azure hosting platform for the database and website is expected to be $150 per month.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

Users will need a browser application with web access capabilities, such as Google Chrome or
Firefox. Microsoft SQL will be used for database storage while C# will be used for backend and
frontend controller logic, and Bootstrap will be used for User Interface design.

For testing, we will use a multitude of browser clients to test the application on our local machine.

There are no hardware interfaces that we will be using.

5.2 HARDWARE AND SOFTWARE

We will be using C#’s built-in Unit Testing Framework for testing individual modules such as the
controller. We will also use the unit testing framework for testing our database as well. One
component of our project utilizes Microsoft Identity, in which we will mock classes for testing
using the Moq framework and the xUnit.net framework.

The User Interface will be tested using Selenium.

We are not utilizing any hardware for our project.

5.3 FUNCTIONAL TESTING

Unit Testing
Each component shall be extensively tested and compared against a predetermined test set that is

SDMAY20-34 13

deemed as the correct specification. This means that every class and its features will be completely
covered before each commit.

Integration Testing
The individual components must be put together and all be tested to ensure that they can
communicate with each other, especially the database correctly. This testing focuses on ensuring
the system works when adding new parts and is tested against the correct UI flow as well as
comparing the expected data with the actual data in the database.

Acceptance Testing
Once our entire project is tested for correct communication, we will meet with our Cylosoft
representatives who will go over and check our project and provide feedback for any necessary
improvements or changes to the software. We will also test our project against our Functional and
Nonfunctional requirements to make sure it is within scope.

User Testing
We will have a third party, someone who knows nothing about our project, use our software in the
eyes of the end user and provide feedback. This feedback will be used to revise the necessary
project components in terms of UI/UX.

The following figure shows the order of the test flow we will follow:

Figure 5

5.4 NON-FUNCTIONAL TESTING

Performance Testing

The performance of database queries will be our main obstacle here. General webpage loading
should not be an issue, but if certain pages have a large amount of data queries it may slow down
loading time.

SDMAY20-34 14

Success condition: Every webpage loads in <500ms

Security Testing

The security of our project will be tested by ensuring unauthorized users do not have access to
more than they are allowed. This will be done using Microsoft Identity features, like allowing us to
easily check a user’s role. If a user does not have the correct role they will not be able to access or
use the desired feature.

Success condition: A user without proper privileges is unable to perform the desired action.

Usability Testing

The usability of the website will ensure that the main home page is accessible and viewable from
any modern device.

Success condition: When visiting the homepage the display adjusts accordingly to the device screen
size and provides the same functionality as on a desktop computer.

Modifiability Testing

The modifiability of our application will be tested by ensuring that changes can be made easily
(reword, be more specific).

5.5 PROCESS

User Interface Testing

● Testing of the user interface is currently done by hand. This means if we want to test a new
feature or change works as intended we must boot up the application, navigate to where
the desired change was made, and test the implementation is correct.

Database Testing

● The database is currently utilizing the built in unit testing system of C#. For each table in
our database there is a corresponding model in our application. Each model can then be
manipulated using the repository corresponding to it.

● Each repository has a corresponding test class in our test project. This breaks up each
repository into their main functions: GetAll(), Get(), Create(), Update(), and Delete(). From
here we can then test each of these individual functions work appropriately.

Figure 6

5.6 RESULTS

The only testing we have done thus far is related to the database. We have verified using our testing
project that the methods: Get(), GetAll(), Create(), Update(), and Delete() work as intended for

SDMAY20-34 15

posts. We have not implemented enough to have full testing regarding other areas of our
application.

6. Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly reiterate your goals. Then, reiterate the best plan
of action (or solution) to achieving your goals and indicate why this surpasses all other possible
solutions tested.

So far, we have a basic prototype where accounts can be created and a post can be created and
viewed from the homepage. We plan to add the comments system and do a lot of UI work so that
users can have unique and creative blogs. Our plan is to get the admin area done early in the spring
semester so that content can be created and then we can focus on the themes and the comments
system. This is the best plan because we can make sure that the actual content that makes the blog
work is there and we have a lot of time to make the creative elements better.

6.2 REFERENCES

“BlogEngine.NET”, Github, https://github.com/rxtur/BlogEngine.NET

6.3 APPENDICES

SDMAY20-34 16

